Xanthine oxidase produces hydrogen peroxide which contributes to reperfusion injury of ischemic, isolated, perfused rat hearts.
نویسندگان
چکیده
Three lines of investigation indicated that hydrogen peroxide (H2O2) from xanthine oxidase (XO) contributes to cardiac dysfunction during reperfusion after ischemia. First, addition of dimethylthiourea (DMTU), a highly permeant O2 metabolite scavenger (but not urea) simultaneously with reperfusion improved recovery of ventricular function as assessed by ventricular developed pressure (DP), contractility (+dP/dt), and relaxation rate (-dP/dt) in isolated Krebs-Henseleit-perfused rat hearts subjected to global normothermic ischemia. Second, hearts from rats fed tungsten or treated with allopurinol had negligible XO activities (less than 0.5 mU/g wet myocardium compared with greater than 6.0 mU/g in control hearts) and increased ventricular function after ischemia and reperfusion. Third, myocardial H2O2-dependent inactivation of catalase occurred after reperfusion following ischemia, but not after ischemia without reperfusion or perfusion without ischemia. In contrast, myocardial catalase did not decrease during reperfusion of ischemic hearts treated with DMTU, tungsten, or allopurinol.
منابع مشابه
The effect of asafoetida essential oil on myocardial ischemic-reperfusion injury in isolated rat hearts
Objective: Previous studies reported that asafetida from Ferula assa-foetida Linn. species and its essential oil (AEO) have antioxidant effects. In the present study, the effect of AEO was evaluated on ischemic-reperfusion injury in isolated rat hearts. Materials and Methods: Forty-eight male Wistar rats were divided into 6 groups: 1) control group, 2) vehicle group, 3-5) AEO groups and, 6) car...
متن کاملRole of Xanthine Oxidase in Reperfusion Injury In Ischemic Myocardium1
= Abstract = The present studies were conducted to confirm the hypothesis that xanthine oxidase-linked cytotoxic oxygen free radicals play an important role in producing the reperfusion injury of ischemic myocardium. The reperfusion injury was induced in isolated, Langendorff preparations of rat hearts by 60 min of global ischemia with aortic clamping followed by 20 min of reperfusion with oxyg...
متن کاملModification of alterations in cardiac function and sarcoplasmic reticulum by vanadate in ischemic-reperfused rat hearts.
To study the cardioprotective effects of vanadate on ischemia-reperfusion (I/R) injury, isolated rat hearts perfused at constant flow were subjected to global ischemia for 30 min followed by reperfusion for 30 min. In this experimental model, I/R markedly decreased ventricular developed pressure and increased end-diastolic pressure. Pretreatment of hearts with 4 microM vanadate attenuated I/R-i...
متن کاملEvaluation of the role of xanthine oxidase in myocardial reperfusion injury.
The free radical-generating enzyme xanthine oxidase has been hypothesized to be a central mechanism of the injury which occurs in postischemic tissues; however, its importance remains controversial. Much attention has focused on the role of this enzyme in myocardial reperfusion injury. While xanthine oxidase has been observed in ischemic tissue homogenates, the presence and importance of radica...
متن کاملReactive oxygen species play an important role in the activation of heat shock factor 1 in ischemic-reperfused heart.
BACKGROUND The myocardial protective role of heat shock protein (HSP) has been demonstrated. Recently, we reported that ischemia/reperfusion induced a significant activation of heat shock factor (HSF) 1 and an accumulation of mRNA for HSP70 and HSP90. We examined the role of reactive oxygen species (ROSs) in the induction of stress response in the ischemic-reperfused heart. METHODS AND RESULT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 81 4 شماره
صفحات -
تاریخ انتشار 1988